Unsupervised Coreference Resolution by Utilizing the Most Informative Relations
نویسندگان
چکیده
In this paper we present a novel method for unsupervised coreference resolution. We introduce a precision-oriented inference method that scores a candidate entity of a mention based on the most informative mention pair relation between the given mention entity pair. We introduce an informativeness score for determining the most precise relation of a mention entity pair regarding the coreference decisions. The informativeness score is learned robustly during few iterations of the expectation maximization algorithm. The proposed unsupervised system outperforms existing unsupervised methods on all benchmark data sets.
منابع مشابه
Corpus based coreference resolution for Farsi text
"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...
متن کاملCorefrence resolution with deep learning in the Persian Labnguage
Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...
متن کاملUnsupervised Event Coreference Resolution
The task of event coreference resolution plays a critical role in many natural language processing applications such as information extraction, question answering, and topic detection and tracking. In this article, we describe a new class of unsupervised, nonparametric Bayesian models with the purpose of probabilistically inferring coreference clusters of event mentions from a collection of unl...
متن کاملAn Infinite Mixture Model for Coreference Resolution in Clinical Notes
It is widely acknowledged that natural language processing is indispensable to process electronic health records (EHRs). However, poor performance in relation detection tasks, such as coreference (linguistic expressions pertaining to the same entity/event) may affect the quality of EHR processing. Hence, there is a critical need to advance the research for relation detection from EHRs. Most of ...
متن کاملJoint Unsupervised Coreference Resolution with Markov Logic
Machine learning approaches to coreference resolution are typically supervised, and require expensive labeled data. Some unsupervised approaches have been proposed (e.g., Haghighi and Klein (2007)), but they are less accurate. In this paper, we present the first unsupervised approach that is competitive with supervised ones. This is made possible by performing joint inference across mentions, i...
متن کامل